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Introduction

Workshop on Modern Applied Mathematics PK 2018 is the seventh edition ofan annual conference on modern mathematics organized by the Institute of Math-ematics of the Faculty of Physics, Mathematics and Computer Science, TadeuszKościuszko Cracow University of Technology.
The Conference aims to present new results, to promote and to bring togetherresearchers in the different research areas of mathematics and influence more co-operation among scientists working in mathematics. This conference will providea unique forum for exchanging ideas and in-depth discussions on different aspectsand different branches of mathematics.
You can find detailed information about conference on the site:
www.wmam.pk.edu.pl

I would like to thank professors Magda Lemańska, Tadeusz Mostowski, KrzysztofNowak and Zdeněk Ryjáček for accepting invitation to give a lecture during theconference and all participants for interest in the fourth edition of our conferenceand scientific research in the field of mathematics.
The conference is under the media patronage of Welcome Cracow.
I would like to express my thanks to Board of Directors and the Administration ofthe Institute of Mathematics as well as the staff of the Institute for their friendlinessand support for conference organization.

On the behalf of the organizing committeeGrzegorz Gancarzewicz
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Plenary Lectures

Domination in graphsMagda Lemańska
Gdańsk University of Technology, Gdańske-mail: magleman@pg.edu.plA dominating set of a graph G = (V , E ) is a set D ⊆ V such that everyvertex of G is either in D or has a neighbour in D. A minimum cardinality of adominating set of G is a domination number of G and is denoted by γ(G). Exceptof being dominating, we can require some other properties of a set D, in terms of,for example, subraphs induced by D (such subraphs can be without isolates, havea perfect matching, be connected etc.) and consider various kinds of domination ingraphs. In particular we consider classical domination, total domination and convexdomination; give some general properties of domination, total domination and convexdomination numbers, influence of some graph operations on these numbers and someapplications.
References

[1] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs,Marcel Dekker, Inc., (1998)
[2] T. Haynes, S. Hedetniemi, P. Slater, Domination in graphs- Advanced Topics,Marcel Dekker, Inc., (1998)
[3] T. Haynes , M. Henning , L. Hopkins, Total domination subdivision numbers ofgraphs, Discussiones Mathematicae Graph Theory 24 (3) (2004) 457-467.
[4] M. Dettlaff, M. Lemańska M., S. Kosary, M.S. Sheikholeslami, The convex dom-ination subdivision number of a graph, Communications in Combinatorics andOptimization 1 (1) (2016) 43–56.
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Wokół hipotezy gradientu R. ThomaTadeusz Mostowski
University of Warsaw, Warszawae-mail: tmostows@mimuw.edu.plReferat bȩdzie dotyczył wlasności trajektorii gradientu funkcji analitycznej rzeczy-wistej. Przedstawiȩ motywacje i klasyczny wynik S. Łojasiewicza. Nastepniesformułujȩ hipotezȩ gradientu, jej szczególne przypadki i- krótko-ideȩ jej dowodu.Sformułujȩ jej dalekie wzmocnienie: hipotezȩ nieoscylacji. Wreszcie podam parȩnierozwia̧zanych problemów. Podkreslȩ zwia̧zek tych zagadnień z wlasnościamizbiorów semi-analitycznych i ich uogólnień.
A closedness theorem and applications in geometry of rational points
over Henselian valued fieldsKrzysztof Nowak
Jagiellonian University, Krakówe-mail: nowak@im.uj.edu.plMy talk is devoted to geometry of algebraic subvarieties of K n over arbitraryHenselian valued fields K of equicharacteristic zero, investigated in my recent pa-pers [3,4,5,6]. At the center of my approach is the closedness theorem to the effectthat the projections K n × Pm(K ) → K n are definably closed maps. It enables,in particular, application of resolution of singularities in much the same way asover locally compact ground fields. Its proof uses i.a. the local behavior of de-finable functions of one variable and fiber shrinking, being a relaxed version ofcurve selection. As applications, I achieve several versions of curve selection (viaresolution of singularities) and of the Łojasiewicz inequality (via two instances ofquantifier elimination indicated below), extending continuous hereditarily rationalfunctions (cf. [2] for the real algebraic version) as well as the theory of regulousfunctions, sets and sheaves, including Nullstellensatz and Cartan’s theorems A andB (cf. [1] for the real algebraic versions). Two basic tools involved are quantifierelimination for Henselian valued fields (in the language of Denef–Pas) due to Pasand relative quantifier elimination for ordered abelian groups (in a many-sortedlanguage with imaginary auxiliary sorts) due to Cluckers–Halupczok. Other, newapplications of the closedness theorem are piecewise continuity of definable func-tions, Hölder continuity of definable functions on closed bounded subsets of K nand a non-Archimedean, definable version of the Tietze–Urysohn extension the-orem from [6]. In the paper [5], I established a non-Archimedean version of theclosedness theorem over Henselian valued fields with analytic structure along withseveral applications.
References

[1] G. Fichou, J. Huisman, F. Mangolte, J.-P. Monnier, Fonctions régulues, J. Reine
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Angew. Math. 718 (2016), 103–151.

[2] J. Kollár, K. Nowak, Continuous rational functions on real and p-adic varieties,Math. Zeitschrift 279 (2015), 85–97.
[3] K.J. Nowak, Some results of algebraic geometry over Henselian rank one valued

fields, Sel. Math. New Ser. 23 (2017), 455–495.
[4] K.J. Nowak, A closedness theorem and applications in geometry of rational

points over Henselian valued fields, arXiv:1706.01774 [math.AG] (2017).
[5] K.J. Nowak, Some results of geometry over Henselian fields with analytic struc-

ture, arXiv:1808.02481 [math.AG] (2018).
[6] K.J. Nowak, A non-Archimedean version of the Tietze–Urysohn theorem over

Henselian valued fields, arXiv:1808.09782 [math.AG] (2018).
Graph properties, forbidden subgraphs and hereditary classesZdeněk Ryjáček
University of West Bohemia Pilsen, Czech Republice-mail: ryjacek@kma.zcu.czA graph property P is hereditary if, whenever a graph G has property P, sodoes every its induced subgraph, and a class of graphs C is hereditary if G ∈ Cimplies G′ ∈ C for every induced subgraph G′ of G .Hereditary properties and classes of graphs are known to have many “nice"properties, and graph problems that are difficult in general can be often substan-tially simplified by imposing a restriction to a suitable hereditary class. Amongothers, hereditary classes of graphs often have a “nice" characterization in terms offorbidden induced subgraphs (i.e., a graph family F such that G ∈ C if and only if
G is F-free), or in terms of a universal graph (i.e., a graph G such that G ∈ C ifand only if G is an induced subgraph of G).In the talk, we illustrate these facts on several classical graph-theoretical prob-lems, namely, on Hamilton-type problems, on graph colorings and on graph label-ings, and we present some recent results in these fields.
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Contributed Talks

Kummer type Calabi-Yau varieties with automorphism of order 6Dominik Burek
Jagiellonian University, Krakówe-mail: dominik.burek@doctoral.uj.edu.plBased on Cynk-Hulek method from [1] we construct complex Calabi-Yau varietiesof arbitrary dimensions using elliptic curves with automorphism of order 6. Also wegive formulas for Hodge numbers of varieties obtained from that construction. Weshall generalize result of [2]] to obtain arbitrarily dimensional Calabi-Yau manifoldswhich are Zariski manifolds in characteristic p ≡ 2 (mod 3) or p ≡ 3 (mod 4).
References[1] CH S. Cynk, K. Hulek, Higher-dimensional modular Calabi-Yau manifolds, Canad.Math. Bull. 50 (2007), 486–503.[2] KatsuraSchutt T. Katsura, M. Shütt Zariski K3 surfaces, arXiv preprint
Period integrals of rigid Calabi-Yau threefolds with Picard-Fuchs oper-
atorsTymoteusz Chmiel
Jagiellonian University, Krakówe-mail: tymoteuszchmiel@gmail.comPeriod integrals of a rigid Calabi-Yau threefold are expected to form a latticethat is commensurable with the lattice generated by special values of the L-functionof the corresponding modular form.The aim of this talk is to present conjectural method of numerical computationof period integrals of rigid Calabi-Yau threefolds. It is based on an analysis of thePicard-Fuchs operator of a family containing birational model of a given threefoldin its closure.This method was numerically verified for 29 one-parameter families of doublecovers of three-dimensional projective space, branched along a sum of eight planes,in singular points of which birational models of rigid double octics appear.
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This talk is based on my bachelor thesis defended this year at the JagiellonianUniversity.

References

[1] S. Cynk, D. van Straten, Periods of double octic Calabi-Yau manifolds.arXiv:1709.09751
[2] C. Meyer, Modular Calabi-Yau threefolds. Fields Institute Monographs, 22.American Ma- thematical Society, Providence, RI, 2005.
Number of points of a double octic over a finite fieldSławomir Cynk
Jagiellonian University, Krakówe-mail: slawomir.cynk@uj.edu.plI will describe an algorithm to compute the number of points of a double octicover a finite field. A double octic is a Calabi-Yau threefold constructed as a resolu-tion of the projective space branched along an arrangement of eight planes. Doubleoctic Calabi-Yau threefolds were introduced in [1], they are intensively studied inthe context of the modularity theorem (see [2]). The Faltings–Serre–Livné methodof proving modularity - which is standard especially in the case of rigid Calabi-Yauthreefolds - is based on counting of points over finite fields. For a fixed prime pthe numbers of points over the field Fpk define the zeta function, which by Dwork’stheorem is rational.Presented algorithm was developed by Aleksander Czarnecki during his PhDstudies
References

[1] S. Cynk, T. Szemberg, Double covers and Calabi–Yau varieties, Banach CenterPubl. 44 (1998), 93–101.
[2] C. Meyer, Modular Calabi-Yau threefolds. Fiebilds Institute Monographs, 22.American Mathematical Society, Providence, RI, 2005.
Non-parametric regression - practical applicationKinga Gła̧bińska
Cracow University of Technology, Krakówe-mail: kingagla@gmail.comThe presentation shows how a non-parametric regression model is created fromscratch. At the beginning it shows what the kernel function is, what purpose itis used for and which ones are the most popular. The listener will also find the
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answer to the question about how different the model differs depending on theselected kernel function. Next, the smoothing parameter is discussed along withan explanation of how to select it and what results in a bad selection of such aparameter. The theoretical foundations are presented in a practical example, whereeach of the previously discussed aspects of regression is shown from the practicalside. The life situations in which nonparametric regression is also used will alsobe presented
References

[1] Ricardo Cao, Nonparametric curve estimation: an overview, Investigaciones Eco-
nomicas, vol. XXI(2), 1997, 209 – 252

[2] Julian J.Faraway, Linear Models with R, CRC press, 2009
[3] Wolfgang Härdle, Applied Nonparametric Regression , Berlin, 1994
[4] Adam Krzyzak, et al., A Distribution-Free Theory of Nonparametric Regression,Springer, 2002
A rational counterexample for the containment I (3) ⊂ I2Marek Janasz
Pedagogical University of Cracowe-mail: marek.janasz@up.krakow.plThe interest in the containment relation between I (3) and I2 for ideals of pointsin P2 is motivated by a question posted by Huneke around 2000. In this presenta-tion we will show a rational counterexample to this containment. This example isinteresting for the number of reasons. It is the first counterexample where all 127intersection points coming from the arrangement are involved. There is an elementfrom the set I (3) \ I2 which is the product of lines and the high degree, irreduciblecurve. Together with another simplicial line arrangement, which is identical to pre-sented from combinatorics point of view, but differ in the dual configuration of lines,is an example that being a counterexample is independent from the combinatorics.
References

[1] Grünbaum B.: A catalogue of simplicial arrangements in the real projectiveplane, ARS Mathematica Contemporanea 2: 1–25 (2009).
[2] Huneke, C.: Open problems on powers of ideals. Notes from a workshop onIntegral Closure, Multiplier Ideals and Cores, AIM, (2006).

www.aimath.org/WWN/integralclosure/Huneke.pdf
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Ergodic invariant measures for Bratteli diagramsOlena Karpel
ILTPE NASU, Kharkiv, Ukraine / AGH University of Science and Technology,
Kraków, Polande-mail: helen.karpel@gmail.comWe study the simplex M1(B) of probability measures on a Bratteli diagram
B which are invariant with respect to the tail equivalence relation. Equivalently,
M1(B) is formed by probability measures invariant with respect to a homeomor-phism of a Cantor set. We prove a criterion of unique ergodicity of a Brattelidiagram. In the case of a finite rank k Bratteli diagram B, we give a criterion for Bto have exactly 1 ≤ l ≤ k ergodic invariant measures and describe the structures ofthe diagram and the subdiagrams which support these measures. Given a naturalnumber l, we find sufficient conditions under which a Bratteli diagram of arbitraryrank has exactly l probability ergodic invariant measures. This is a joint work withS. Bezuglyi and J. Kwiatkowski. The talk contains the results of studies conductedby President’s of Ukraine grant for competitive projects (F75/145-2018) of the StateFund for Fundamental Research.
A version of Cartan’s Theorem A for coherent sheaves on real affine
varietiesTomasz Kowalczyk
Jagiellonian Universitye-mail: tomek.kowalczyk@student.uj.edu.plIt is known that Cartan’s Theorem A does not hold in the real algebraic case.Nevertheless, we established a real version of Theorem A to the effect that for anycoherent sheaf F on a non-singular real affine variety X there exists a multi-blowup
σ : X̃ → X such that the pull-back sheaf σ ∗F is generated by global sections on
X̃ .
References
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Minimal projection onto certain subspace of Lp(X × Y × Z )Michał Kozdęba
Jagiellonian University, Krakówe-mail: michal.w.kozdeba@gmail.comLet X, Y , Z be Banach spaces. We show a formula for a minimal projectionfrom Lp(X × Y × Z ) onto its subspace Lp(X × Y ) + Lp(X × Z ) + Lp(Y × Z ) and its
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generalization for space Lp(X1 × X2 × . . .× Xn).It is an extension of a result of Cheney and Light [1] who showed a formula for aminimal projection from Lp(X × Y ) onto Lp(X ) + Lp(Y )
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Approximation by positive linear operators associated with Hermite poly-
nomialsGrażyna Krech
AGH University of Science and Technology, Krakówe-mail: krech@agh.edu.plThe aim of this talk is to present approximation properties of linear, positive op-erators associated with orthogonal expansions. We consider Poisson type integralsfor Hermite and Laguerre expansions and study their approximation properties inthe Lp space.We also discuss some combinations of the operators presented here and computetheir rate of convergence.
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Containment problem and combinatoricsMagdalena Lampa-Baczyńska
Pedagogigacl University of Cracowe-mail: lampa.baczynska@wp.plIn algebraic geometry and commutative algebra there has been recently a lotof interest in comparing usual (algebraic) and symbolic powers of homogeneousideals. It was motivated by a following conjecture of Harbourne and Huneke (seedetails in [2]).
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Conjecture 1. Let I ⊂ K[PN ] be the ideal of finite number of points. Then I (m) ⊂ Ir
if m ≥ rN − (N − 1).

The research in this area was based on the ideals of points coming from thelines arrangements and the combinatorial features of these configurations of lines.Recently in [1] appeared first example showing that this path of reasoning is notnecessary correct.The purpose of this talk is to give short introduction to the problem of contain-ment relations between powers of the ideals and survey some new results in thisarea.
References
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Creative destruction as the mechanism leading to equilibrium in the com-
petitive economyAgnieszka Lipieta
Cracow University of Economics, Krakówe-mail: alipieta@uek.krakow.plJoseph Schumpeter considered two different mechanisms governing two formsof the economy i.e. the circular flow and the economic development (Schumpeter,1912). Namely, the tatonnement mechanism which moves the economic systemto a state of Walras equilibrium (see (Walras, 1954)) as well as the creative de-struction moving the economic system, through the imitation processes, to aĘnewequilibrium state. The creative destruction, by Schumpeter, consists of two oppositeprocesses: innovative processes resulting in the introduction of new commodities,new technologies, new organizational structures etc. and processes of eliminationof existing, outdated solutions. A state of equilibrium which earlier had been theaim of economic processes, became the initial point of further development of theeconomy. In the above elaborations the economic mechanism, understood as theset of rules and regularities explaining the social and economic life, played a sig-nificant role. The aim of this research is the analysis of the creative destruction byincorporating Hurwicz mechanisms (Hurwicz, 1987; Lipieta, Malawski, 2016) in asuitably modified Arrow-Debreu model (see (Arrow, Debreu, 1954).This work is supported by National Science Centre in Poland, GRANT2017/27/B/HS4/00343.
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On numbers of permutations being products of pairwise disjoint cycles of
length dPiotr Miska
Jagiellonian University, Krakówe-mail: piotrmiska91@gmail.comIn [1] T. Amdeberhan and V. Moll studied combinatorical identities, 2-adic val-uations and asymptotics of numbers H2(n) of involutions of a set with n elements,i. e. permutations σ ∈ Sn such that σ 2 is the identity function. Let us noticethat each involution can be written as a product of pairwise disjoint transpositions.Then there is natural to ask about arithmetic properties of numbers Hd(n) of per-mutations of a set with n elements which are products of pairwise disjoint cycles oflength d (d is a fixed positive integer greater than 1). During the talk I will presentsome results on numbers Hd(n), e. g. periodicity of sequences (Hd(n) (mod pr))n∈Nwhere p is a prime number and r is a positive integer, p-adic valuations and prop-erties of polynomials associated with exponential generating functions of sequences(Hd(n))n∈N.This is a joint work with Maciej Ulas.
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Definable homotopy theory and GTSArtur Piȩkosz
Cracow University of Technology, Krakówe-mail: apiekosz@pk.edu.plThe (weakly) semialgebraic homotopy theory of H. Delfs and M. Knebusch(developed in the 1980s) was extended in 2013 to a (weakly) definable homotopytheory over o-minimal expansions of real closed fields by A. Piękosz. One can hopefor further generalizations: for any expansions of real closed fields or even for anyexpansions of ordered fields.One of the main tools was the generalized topology of Delfs and Knebusch,which allows to glue together infinitely many definable sets. A generalized topo-logical space induces a usual topology and many interesting bornologies (for ex-ample: the bornology of small sets). One may see a generalized topological spaceas a bornological universe with additional structure. We mention the problems ofquasi-metrization and strict compactification of generalized topological spaces.The category of generalized topological spaces and strictly continuous map-pings, denoted by GTS, has many interesting full subcategories and gives a seriesof examples of topological constructs. The subcategories of small spaces (SS) andlocally small spaces (LSS) have nice simple descriptions. The subcategory of par-tially topological spaces GTSpt and its subcategories may lead to new branchesof topological algebra.
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A generalization of Bourgain’s inequalityRafał Pierzchała
Jagiellonian University, Krakówe-mail: Rafal.Pierzchala@im.uj.edu.plWe will recall a certain polynomial inequality for convex bodies due to J. Bour-gain and present its generalization for subanalytic sets.
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Cyclotomic properties of polynomials associated with automatic sequencesBartosz Sobolewski
Jagiellonian University, Krakówe-mail: bartosz.sobolewski@doctoral.uj.edu.plConsider a k-automatic sequence {an}n≥0 and the polynomials

An(x) = n−1∑
m=0amx

m.

For a primitive r-th root of unity ωr , with r coprime to k , we study the behavior of
An(ωr). We derive a recurrence relation of the form

l∑
i=0 Pi(ωr)An+is(ωr) = 0,

where s is such that ks ≡ 1 (mod r), and P0, . . . , Pl are polynomials independentof n. This is a generalization of a result by Brillhart, Lomont and Morton [1]concerning the Rudin–Shapiro sequence.We show that in general l can be bounded from above by the number of statesin the automaton generating {an}n≥0 and provide a sharper bound for some specialcases.We also study the integrality of the coefficients P0(ωr), . . . , Pl(ωr).
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Model Kermacka - McKendrickaOktawia Targosz
Cracow University of Technologye-mail: oktawia.targosz96@gmail.comModel type SIR. Kermack- McKendrick model assumes the division of a con-stant number of individuals in the population into three groups: 1) Healthy andsusceptible individuals (susceptible), 2) Infested individuals (infected), 3) Individualswho have acquired permanent immunity or have been removed from the population,i.e. they have no further connection with the development disease (resistant) Fur-ther activities consist in examining the model using mathematical methods andstatements describing their operation
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Łojasiewicz inequality at singular pointAnna Valette
Jagiellonian University, Krakówe-mail: anna.valette@gmail.comIn this talk we will prove a generalized version of Łojasiewicz inequality. Thefamous Łojasiewicz inequality asserts that if f is a C1 globally subanalytic functionin a neighborhood of a point a ∈ Rn there is a neighborhood U of a and a rationalnumber θ ∈ [0, 1) as well as a constant C such that |f (x) − f (a)|θ ≤ C |∇xf | for
x ∈ U (where ∇xf stands for the gradient of the function f at x). We will givean inequality of the same type that applies to the case where a is not an interiorpoint of the domain of f .
A famous theorem of Glicksberg on Čech-Stone compactifications of prod-
ucts fails in a model of ZFEliza Wajch
Siedlce University of Natural Sciences and Humanities, Siedlcee-mail: eliza.wajch@gmail.comIf a Tychonoff space X has its Čech-Stone compactification, then βX stands theČech-Stone compactification of X . One of the most famous theorems of Glicksbergthat holds true in ZFC asserts that if X and Y are pseudocompact Tychonoff spacessuch that X×Y is pseudocompact, then βX×βY is the Čech-Stone compactificationof X × Y (cf. [1]). A proof to a theorem of [3] that the above-mentioned Glicksberg’stheorem is false in ZF-model M37 of [2] will be shown. Other relevant newproblems and applications of amorphous sets will be discussed.
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[3] K. Keremedis and E. Wajch, Hausdorff compactifications in ZF,
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Davenport’s constant for finite abelian groups with rank threeMaciej Zakarczemny
Cracow University of Technology, Krakówe-mail: mzakarczemny@pk.edu.plLet G be a finite abelian group and D(G) denote the Davenport constant of G .The precise value of the Davenport constant is known for p-groups and for groupsof rank at most two, see [4], [5]. For general finite abelian groups the precise valueis still unknown, see [3], [1].We derive new upper bound for the Davenport constant for all groups of rank three.Our main result is that:
D(Cn1 ⊕ Cn2 ⊕ Cn3 ) ≤ (n1 − 1) + (n2 − 1) + (n3 − 1) + 1 + (c3 − 3)(n1 − 1),

where c3 ≤ 20369 is a constant.Therefore D(Cn1 ⊕ Cn2 ⊕ Cn3 ) grows linearly with the variables n1, n2, n3.
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